31 research outputs found

    Scalable collision detection for distributed virtual environments

    Get PDF
    PhD ThesisDistributed Virtual Environments (DVEs) provide a mechanism whereby dispersed users can interact with one-another within a shared \'irtual world. DVEs commonly allow users to interact with one-another in ways analogous to the real-world, e.g. mimicking Newtonian physics. A scalable DVE should enable large numbers of users to participate simultaneously, regardless of the In geographical location and hardware configurations of individual users. addition, these users should perceive a mutually-consistent virtual world in which each user perceives a consistent series of events in real-time. Collision detection and response is a fundamental requirement of most virtual environments and simulations. It is a computationally-expensive operation which must be perfonned at frequent intervals in all virtual environments which simulate the motion of solid objects. Collision detection has received large amounts of research interest and as a result a number of efficient collision detection algorithms have been proposed. However, these collision detection approaches are designed to detect collisions efficiently in simulations run on a single machine and are not capable of overcoming problems associated with scalability and consistency, which are of paramount importance in DVEs. This thesis presents a new collision detection approach, tenned distributed collision detection, which provides high-levels of scalability, consistency and responsiveness. This thesis presents the algorithms and theory which underpin the distributed collision detection approach and provides experimental results demonstrating its scalability and responsiveness

    Selective Cholesterol Dynamics between Lipoproteins and Caveolae/Lipid Rafts

    Get PDF
    Although low-density lipoprotein (LDL) receptor-mediated cholesterol uptake through clathrin-coated pits is now well understood, the molecular details and organizing principles for selective cholesterol uptake/efflux (reverse cholesterol transport, RCT) from peripheral cells remain to be resolved. It is not yet completely clear whether RCT between serum lipoproteins and the plasma membrane occurs primarily through lipid rafts/caveolae or from non-raft domains. To begin to address these issues, lipid raft/caveolae-, caveolae-, and non-raft-enriched fractions were resolved from purified plasma membranes isolated from L-cell fibroblasts and MDCK cells by detergent-free affinity chromatography and compared with detergent-resistant membranes isolated from the same cells. Fluorescent sterol exchange assays between lipoproteins (VLDL, LDL, HDL, apoA1) and these enriched domains provided new insights into supporting the role of lipid rafts/caveolae and caveolae in plasma membrane/lipoprotein cholesterol dynamics:  (i) lipids known to be translocated through caveolae were detected (cholesteryl ester, triacylglycerol) and/or enriched (cholesterol, phospholipid) in lipid raft/caveolae fractions; (ii) lipoprotein-mediated sterol uptake/efflux from lipid rafts/caveolae and caveolae was rapid and lipoprotein specific, whereas that from non-rafts was very slow and independent of lipoprotein class; and (iii) the rate and lipoprotein specificity of sterol efflux from lipid rafts/caveolae or caveolae to lipoprotein acceptors in vitro was slower and differed in specificity from that in intact cellsconsistent with intracellular factors contributing significantly to cholesterol dynamics between the plasma membrane and lipoproteins

    Determining Collisions between Moving Spheres for Distributed Virtual Environments

    No full text
    We present an approach to collision detection that is appropriate for satisfying the requirements of interest management schemes used in distributed virtual environments. Such environments are characterized by their distributed deployment over a number of nodes connected via a computer network. The aim of an interest management scheme is to identify when objects that populate a simulation supported by a distributed virtual environment (objects could be hosted on different nodes) should be interacting via message exchange while preventing objects that should not be interacting from exchanging messages. The approach to collision detection presented in this paper produces accurate results when determining object interactions. Furthermore, we present variations on our approach that exploit any coherence that may exist in a simulation to provide a solution that may scale for large numbers of objects. 1

    Expanding Spheres: A Collision Detection Algorithm for Interest Management in Networked Games

    No full text
    Abstract. We present a collision detection algorithm (Expanding Spheres) for interest management in networked games. The aim of all interest management schemes is to identify when objects that inhabit a virtual world should be interacting and to enable such interaction via message passing while preventing objects that should not be interacting from exchanging messages. Preventing unnecessary message exchange provides a more scalable solution for networked games. A collision detection algorithm is required by interest management schemes as object interaction is commonly determined by object location in the virtual world: the closer objects are to each other the more likely they are to interact. The collision detection algorithm presented in this paper is designed specifically for interest management schemes and produces accurate results when determining object interactions. We present performance figures that indicate that our collision detection algorithm is scalable. 1

    Factory: Fast Contact for Robotic Assembly

    Full text link
    Robotic assembly is one of the oldest and most challenging applications of robotics. In other areas of robotics, such as perception and grasping, simulation has rapidly accelerated research progress, particularly when combined with modern deep learning. However, accurately, efficiently, and robustly simulating the range of contact-rich interactions in assembly remains a longstanding challenge. In this work, we present Factory, a set of physics simulation methods and robot learning tools for such applications. We achieve real-time or faster simulation of a wide range of contact-rich scenes, including simultaneous simulation of 1000 nut-and-bolt interactions. We provide 6060 carefully-designed part models, 3 robotic assembly environments, and 7 robot controllers for training and testing virtual robots. Finally, we train and evaluate proof-of-concept reinforcement learning policies for nut-and-bolt assembly. We aim for Factory to open the doors to using simulation for robotic assembly, as well as many other contact-rich applications in robotics. Please see https://sites.google.com/nvidia.com/factory for supplementary content, including videos.Comment: Accepted to Robotics: Science and Systems (RSS) 202

    Effect of sterol carrier protein-2 gene ablation on HDL-mediated cholesterol efflux from cultured primary mouse hepatocytes

    No full text
    Although HDL-mediated cholesterol transport to the liver is well studied, cholesterol efflux from hepatocytes back to HDL is less well understood. Real-time imaging of efflux of 22-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-amino)-23,24-bisnor-5-cholen-3β-ol (NBD-cholesterol), which is poorly esterified, and [3H]cholesterol, which is extensively esterified, from cultured primary hepatocytes of wild-type and sterol carrier protein-2 (SCP-2) gene-ablated mice showed that 1) NBD-cholesterol efflux was affected by the type of lipoprotein acceptor, i.e., HDL3 over HDL2; 2) NBD-cholesterol efflux was rapid (detected in 1–2 min) and resolved into fast [half time (t½) = 2.4 min, 6% of total] and slow (t½ = 26.5 min, 94% of total) pools, consistent with protein- and vesicle-mediated cholesterol transfer, respectively; 3) SCP-2 gene ablation increased efflux of NBD-cholesterol, as well as [3H]cholesterol, albeit less so due to competition by esterification of [3H]cholesterol, but not NBD-cholesterol; and 4) SCP-2 gene ablation increased initial rate (2.3-fold) and size (9.7-fold) of rapid effluxing sterol, suggesting an increased contribution of molecular cholesterol transfer. In addition, colocalization, double-immunolabeling fluorescence resonance energy transfer, and electron microscopy, as well as cross-linking coimmunoprecipitation, indicated that SCP-2 directly interacted with the HDL receptor, scavenger receptor class B type 1 (SRB1), in hepatocytes. Other membrane proteins in cholesterol efflux [SRB1 and ATP-binding cassettes (ABC) A-1, ABCG-1, ABCG-5, and ABCG-8] and several soluble/vesicle-associated proteins facilitating intracellular cholesterol trafficking (StARDs, NPCs, ORPs) were not upregulated. However, loss of SCP-2 elicited twofold upregulation of liver fatty acid-binding protein (L-FABP), a protein with lower affinity for cholesterol but higher cytosolic concentration than SCP-2. Ablation of SCP-2 and L-FABP decreased HDL-mediated NBD-cholesterol efflux. These results indicate that SCP-2 expression plays a significant role in HDL-mediated cholesterol efflux by regulating the size of rapid vs. slow cholesterol efflux pools and/or eliciting concomitant upregulation of L-FABP in cultured primary hepatocytes
    corecore